Alf-Cemind Workshop / Athen
16th May 2007

Technology Options for the Cement Industry with the Use of Alternative Fuels

Andreas Hand
Head of Pyro Process Engineering
KHD Humboldt Wedag GmbH
1. Secondary Fuels – Challenge and Opportunity
 - Properties and Fuel Characteristics
 - Influences on Process and Equipment

2. Technical Solutions
 - Burner Technology
 - Calciner Technology
 - Kiln exit-gas extraction (Bypass Systems)

3. Case Study:
 Plant Comparison considering Primary and Secondary Fuels
Secondary Fuels – Challenge and Opportunity

- Animal-meal
- Municipal Waste
- Rice husks
- Sewage-sludge
- RDF
- Rubber chips
- Wood chips
- Tires
Influences of Secondary Fuel Utilisation on Pyro Process

Challenges:

Global Goals:

- Saving of natural resources
- Reduction of CO$_2$ emissions (Emission trading)
- Thermal recycling

Individual Goals:

- Earning of disposal fees
- Reduction of fuel costs “negative fuel costs”
- Stronger market position
Influences of Secondary Fuel Utilisation on Pyro Process

However:

- Establishment of an additional fuel management
- Silos and storage facilities, dosing and transport equipment

Process influenced by:

- Higher specific waste gas volume and pressure drop
- Increase of specific heat demand
- Increase of chlorine and sulphur input within the system
-
Typical Secondary Fuels

<table>
<thead>
<tr>
<th></th>
<th>Petcoke</th>
<th>Tyres</th>
<th>Fluff RDF</th>
<th>Sewage sludge</th>
<th>Animal meal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture [%]</td>
<td>0,11</td>
<td>1,00</td>
<td>17,80</td>
<td>6,60</td>
<td>3,40</td>
</tr>
<tr>
<td>Volatiles [%]</td>
<td>10,90</td>
<td>61,00</td>
<td>65,00</td>
<td>45,30</td>
<td>68,70</td>
</tr>
<tr>
<td>Hardgrove [°H]</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal. Value H_u [kJ/kg]</td>
<td>34830</td>
<td>29480</td>
<td>14650</td>
<td>9849</td>
<td>19990</td>
</tr>
<tr>
<td>Ash [% w.f.]</td>
<td>1,28</td>
<td>7,50</td>
<td>17,69</td>
<td>46,20</td>
<td>20,50</td>
</tr>
<tr>
<td>Carbon [% w.f.]</td>
<td>86,36</td>
<td>81,00</td>
<td>53,08</td>
<td>26,60</td>
<td>43,80</td>
</tr>
<tr>
<td>Hydrogen [% w.f.]</td>
<td>3,49</td>
<td>6,70</td>
<td>7,26</td>
<td>4,93</td>
<td>5,30</td>
</tr>
<tr>
<td>Oxigen [% w.f.]</td>
<td>1,85</td>
<td>3,00</td>
<td>19,50</td>
<td>16,00</td>
<td>16,90</td>
</tr>
<tr>
<td>Nitrogen [% w.f.]</td>
<td>1,61</td>
<td>0,30</td>
<td>0,47</td>
<td>5,73</td>
<td>8,90</td>
</tr>
<tr>
<td>Chloride [% w.f.]</td>
<td>0,01</td>
<td>0,10</td>
<td>1,20</td>
<td>0,05</td>
<td>0,60</td>
</tr>
<tr>
<td>Sulphur [% w.f.]</td>
<td>5,40</td>
<td>1,70</td>
<td>0,80</td>
<td>0,46</td>
<td>0,50</td>
</tr>
<tr>
<td>P_2O_5 [% w.f.]</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 1,0</td>
<td>< 5,0</td>
<td>< 0,1</td>
</tr>
<tr>
<td>Hg [ppm]</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 1,0</td>
<td>< 5,0</td>
<td>< 0,1</td>
</tr>
<tr>
<td>Cd + Tl [ppm]</td>
<td>< 10,0</td>
<td>< 20,0</td>
<td>< 20,0</td>
<td>< 10,0</td>
<td>< 10,0</td>
</tr>
<tr>
<td>Σ(Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V) [ppm]</td>
<td>< 3000</td>
<td>< 2000</td>
<td>< 2000</td>
<td>< 5000</td>
<td>< 1000</td>
</tr>
</tbody>
</table>
Characteristics of some solid fuels

<table>
<thead>
<tr>
<th></th>
<th>coal</th>
<th>petcoke</th>
<th>anthracite</th>
<th>tyre chips</th>
<th>fluff-RDF</th>
<th>animal meal</th>
<th>sewage sludge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat value</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟥</td>
</tr>
<tr>
<td>Preparation</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Handling</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Chlorine Input</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🦜</td>
</tr>
<tr>
<td>Sulfur Input</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🦜</td>
</tr>
<tr>
<td>NOx reduction potential</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Fuel costs</td>
<td>🟥</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
</tbody>
</table>

- 🟢: positive
- 🟢: indifferent
- 🟥: negative
Feeding Points for Secondary Fuels

Kiln system without pre-calciner

Low pre-calcination rate of hot meal (app. 40%)

Fuel used for sintering and calcination in the kiln

Possible to use fuels with “delayed heat release” in the kiln burner to shift energy to the calcination zone.
Kiln system with pre-calciner and combustion chamber

- **Calcining zone**
- **Transition and Sintering zone**
- **Combustion Chamber**

High pre-calcination rate of hot meal (> 90%)

Fuel energy in the calciner (up to 60 %) is used for pre-calcination

Fuel energy in the kiln is used for sintering

Shifting secondary fuels with „low quality“ properties to the combustion chamber.

=> Increased Flexibility
Technical Solutions - Burning Technology

Examples for typical secondary fuels

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Heat Value [MJ/kg]</th>
<th>PYROSTREAM Kiln burner</th>
<th>PYROCLON R LN Calciner</th>
<th>PYROCLON R LN Combustion Chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Oil</td>
<td>~ 33</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Animal Meal</td>
<td>~ 17</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Petrolcoke</td>
<td>~ 33</td>
<td>Max. 5%</td>
<td>Max. 5%</td>
<td>Max. 10%</td>
</tr>
<tr>
<td>Anthrazite</td>
<td></td>
<td>R 90µm</td>
<td>R 90µm</td>
<td>R 90µm</td>
</tr>
<tr>
<td>Hard Plastics</td>
<td>~ 27</td>
<td>0 – 4 mm</td>
<td>0 – 5 mm</td>
<td>0 – 50 mm</td>
</tr>
<tr>
<td>Tyre Chips/Rubber residues</td>
<td>~ 32</td>
<td>-</td>
<td>Max. 40 x 40 mm</td>
<td>Max. 70 x 70 mm</td>
</tr>
<tr>
<td>Fluff-RDF</td>
<td>~ 18</td>
<td>0 – 10 mm</td>
<td>0 – 30 mm</td>
<td>0 – 100 mm</td>
</tr>
<tr>
<td>Biomass/Sewage Sludge</td>
<td>~ 15</td>
<td>0 – 4 mm</td>
<td>0 – 5 mm</td>
<td>0 – 50 mm</td>
</tr>
</tbody>
</table>
Technical Solutions - Burner Technology

The PYRO-JET Burner

A typical multi-channel burner for various fuels. To achieve highest substitution rates, the burner can fire different combustibles in mixed rates: Sewage sludge, animal meal, coal, used oil, solvents and contaminated water.
Technical Solutions - Burner Technology

PYROJET®-Burner in a German cement plant

- Slots for secondary fuel atomization
- Secondary fuel channel
- Main swirl air slots
- Inner coal dust nozzle
Technical Solutions - Burner Technology

► PYROSTREAM®-Burner for improved adjustment of flame shape and intensity
Technical Solutions - Burner Technology

Fuel mix, thermal input, for two KHD burners

► PYRO-JET Burner (Swiss)
 ▶ 25% Coal
 ▶ 19% Oil
 ▶ 13% Solvents
 ▶ 34% Plastics (<10 mm)
 ▶ 9% Sewage Sludge

► PYROSTREAM Burner (France)
 ▶ 36% Coal
 ▶ 35% Animal Meal
 ▶ 23% Fluff (<25 mm)
 ▶ 6% Solvents
Technical Solutions - Calciner Technology

PYROCLON® LowNOx Calciner:

- primary fuels like lignite, coal, oil, gas
- alternative fuels like liquids or animal meal

Fuels: suspended in air and easy to ignite lumpy and difficult to ignite
Technical Solutions - Calciner Technology

Extended PYROCLON® LowNOx Calciner:
- fine anthracite & petcoke (< 5% R 90µm)
- Fluff - RDF / sewage sludge / shredded tyres

Fuels: suspended in air and easy to ignite lumpy and difficult to ignite
Technical Solutions - Calciner Technology

PYROCLON® LowNOx Calciner with ignition module:
✓ coarse anthracite & petcoke (5-8% R90µm)

Fuels: suspended in air and easy to ignite lumpy and difficult to ignite
Technical Solutions - Calciner Technology

regular extended Ignition module Combustion chamber

Fuels: suspended in air and easy to ignite lumpy and difficult to ignite
Technical Solutions - Calciner Technology

PYROCLON®-R LowNOx

- Staged combustion
- Low cost NOx - reduction without additives (SNCR process)
- High efficiency and flexibility
- > 30 references
- BAT „Best Available Technique“
 Emission level: < 500 mg NO₂/Nm³
PYROCLON® LowNOx Calciner
Holnam, Devil’s Slide Plant

Feeding level for diaper & tyre chips
(max. 40% / 50 x 50 mm²)

PYROTOP® compact swirl chamber
PYROCLON®-R Calciner with Combustion Chamber

- Meal from second last cyclone
- Swirl air
- Combustion air
- Swirl air
- Bypass air
- Tertiary air
- Secondary fuel
- Gas
- Burner - swirl air
- Coal / petcoke
Advantages

- High flexibility and efficiency.
- Lower demand on fuel quality and preparation
 - saving of treatment costs
- Ignition and start of combustion in pure air at high temperatures (T \sim 1200°C).
- Raw meal feeding to the swirl air leads to meal fogging at the wall and thereby protecting it against overheating.
- Winning of additional retention time. Final burnout in pre-calciner.
Norcem A.S. / Dalen
Modification of PYROCLON - Calciner with Combustion Chamber
Modernisation Steps of Kiln Line 6

- **1966:** “Basis” 1600 t/d
 - PH: 3556/4
 - Kiln: 4.4 x 68 m
 - Cooler: 54 m²

- **1988:** “Prod. Increase” 3500 t/d
 - PH + Calc.: PR-LowNOx 5356 / 5635/4
 - Cooler: 70 m²

- **2002:** “Secondary Fuels” 3500 t/d
 - PR calciner with combustion chamber
 - max. increase of secondary fuels
PYROCLON® Calciner with Combustion Chamber:
Norcem Plant / Norway

- Successfully in operation since December 2004
- 90% of the calciner fuel is substituted by secondary fuels
- CO at stack, dry at 11%: < 0.1 %

Calciner (combustion chamber): 60 th-% of total fuel

- Coal / Pet coke / Animal Meal mix: 6 th-%
- Solid hazardous waste: 16 th-%
- Fluff RDF: 38 th-%

Main burner: 40 th-% of total fuel

- Coal / Pet coke mix: 34 th-%
- Liquid hazardous waste: 4 th-%
- Animal meal: 2 th-%

Typically:
16 to 18 t/h of solid haz. waste and heterogenous RDF fed to the combustion chamber
Holcim
Campulung / Romania
New Kiln Line 4000 t/d

Top Air Duct

Combustion Chamber

Static Orifice
Technical Solutions - Bypass Systems

KHD Bypass System

- Efficient mixing of gas streams
- Rapid cooling of the bypass gases
- Homogenous mixing gas temperature
- Patented water injection system
Technical Solutions - Bypass Systems

Influence of sulphur and chlorides on preheater operation
Typical Arrangement for Bypass Extraction

- Bypass gas to dedusting
- Mixing chamber
- Cooling air
- Kiln inlet chamber
- Tertiary air duct
Case study:
Conventional Plant for Primary Fuels

Plant A

Production 3500 t/d
Coal 27,8 MJ/kg

Specific heat consumption 2956 kJ/kg cli
Specific waste gas amount at fan inlet 1,4 Nm³/kg
Pressure drop at fan inlet - 47 mbar
Case study:
Plant for Primary and Secondary Fuels

Plant B

Production: 3500 t/d

Primary-Secondary Fuel Mix: 16,8 MJ/kg

(≈ 40% coal, ≈ 60% altern. fuel mix)

Specific heat consumption: 3274 kJ/kg cli

Specific waste gas amount at fan inlet: 1,6 Nm³/kg

Pressure drop at fan inlet: - 68 mbar
Case Study:

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Plant A</th>
<th>Plant B</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant without combustion chamber, bypass and extended calciner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific heat demand</td>
<td>2956 kJ/kg cli.</td>
<td>3274 kJ/kg cli.</td>
<td>+ 10 %</td>
</tr>
<tr>
<td>Specific exhaust gas amount</td>
<td>1.4 Nm³/kg cli.</td>
<td>1.6 Nm³/kg cli.</td>
<td>+ 14 %</td>
</tr>
<tr>
<td>Pressure drop at fan inlet</td>
<td>- 47 mbar</td>
<td>- 68 mbar</td>
<td>+ 45 %</td>
</tr>
</tbody>
</table>
Case study:
10% more in specific heat demand shared to …

Plant with combustion chamber, extended calciner and bypass

- Exhaust Gas: 40%
- Bypass: 39%
- Radiation: Kiln: 12%
- Radiation: Preheater, Calciner: 8%
- Dust: 1%
Challenge of Using Secondary Fuels

Development of costs absolut

Costs

Profit

Time

Target

- x%

Costs / t clinker

Profit

Development of costs absolut

Costs

Profit

Time

Target

- x%
KHD Humboldt

“150 Years Leadership in Technology”

and Cement Plant Engineering

- Innovative, reliable technology
- High availability and flexibility
- Low specific energy demand
- Low emission levels
- Customised solutions